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ABSTRACT

'We incorporate the effects of material temperature sensitivity and heat
conduction into an infinite band type analysis of shear localization. Full
account is taken of finite geometry changes, but inertial effects are neglected. An
energy balance is written between homogeneously deforming bands in a manner
that models conditions in our recent finite element study of shear band
development from internal inhomogeneities in a solid subject to plane strain
compression. The band analysis requires specification of an imperfection
amplitude and a length scale over which heat conduction effects are significant.
These are chosen to match results of a finite element analysis. The predictions of
the simple band analysis and the results of full finite element calculations are
then compared for a wide range of material properties for both isotropic and
kinematic hardening characterizations of the flow potential surface. The predicted
dependence of the onset of localization on material properties such as strain
hardening and strain rate sensitivity is the same for both types of analysis. -,
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1. INTRODUCTION

Shear bands frequently accompany the large plastic straining of materials.

The large localized strains in a shear band often precipitate fracture. When

shear bands do not lead to fracture the localized shearing greatly affects

subsequent plastic deformation. Hence, shear bands have a dual significance:

as a precursor to fracture and as a mechanism for large strain plastic

deformation. In metals subject to high rates of loading, shear bands can form

as the result of a thcrmomcchanical instability. The same metal may also

undergo shear localization at very low strain rates, where thermal effects are

negligible, with some other mechanism causing the localization.

In this paper, we present a method for predicting the onset of shear

localization in rate and temperature dependent solids. Localization is

regarded as an instability which develops as the result of the growth of an

initial inhomogencity in a narrow plane (the imperfection band) of an

otherwise homogeneous material. We carry out our analysis withi a

framework that regards localization as a material instability (Hill [1], Thomas

[2], Mandel [3], Rice [4]), which has been used to analyze the influence of a

variety of constitutive features on localization, e.g. Rice [4], Hill and -

Hutchinson [5], and. Needleman and Rice [6]. The general framework for

imperfection-based localization studies for time independent solids has been

presented by Rice [4], which follows the shear band bifurcation methodology -

inherent in Marciniak and Kuczynski's [7] analysis of localized necking in thin

sheets. Studies of localization along these lines have been carried out by

Hutchinson and Tvergaard [8] and Saje, Pan and Needleman [9]. The effects

I'-)'- ,TG .;, :,' 'i --'--;-.", ..:.,:--?.?;. .-. -..-,-:.,. ,. .. '2.?,?.".' .'. :.- .'...:,.'. ?:? 2". :"..7 -;" :. .. .. .-.- .-: -: -:. i-:l6.
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of material strain rate sensitivity have been included by Pan, Saje and

Needleman [10].

The present analysis for localization builds upon the existing framework for

rate dependent solids in [10] by incorporating temperature sensitivity into the

formulation. Attention is focused on the response in the imperfection band and

in a thin strip of material at a characteristic distance from it. The conditions

under which a highly localized pattern of deformation in the imperfection band

can emerge relative to an imposed homogeneous deformation in the material strip

are sought.

The onset of localization depends critically on the details of the assumed

constitutive law. It is well known that yield surface curvature plays an

important role in the localization process. The classical elastic-plastic solid with a

smooth yield surface is quite resistant to localization, Rudnicki and Rice [11].

However, for a kinematically hardening solid with a smooth yield surface,

localization is possible at achievable strain levels in the three-dimensional shear

localization context, Hutchinson and Tvergaard [8]. This effect has also been

observed in the plane stress sheet necking context, Tvcrgaard [12] and Needleman

and Tvergaard [13].

Analyses are performed using a viscoplasticity theory which, in the rate

independent limit, corresponds to J2 flow theory with combined isotropic and

kinematic hardcning. The formulation incorporates the effects of thermal

softening, strain hardening, strain rate sensitivity and heat conduction. The

momentum and energy balance equations are coupled via the temperature

dependent flow stress and the internal heat generation resulting from plastic

deformation, and arc solved simultaneously.

Full account is taken of finite geometry changes, but inertial effects arc

neglected. Attention is confined to a range of strain rates, from say 10-3 scc " to
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103 see, where material rate sensitivity is the main time effect and higher strain

rates where inertial effects play an important role are excluded from

consideration.
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2. CONDITION FOR LOCALIZATION

An infinite planar solid which contains a thin planar imperfection band is

shown in Fig. 1. The imperfection band is denoted by the region labelled b, and a

thin strip of the surrounding material located at a distance I from the imperfection

band is labclled 's' The unit normal vector to both the imperfection band and the

material strip, denoted by v, is initially oriented at an angle 00 from the compression

axis. The width of both regions is denoted by w, and is assumed to be sufficiently

small so that the properties and fields in them may be considered to be homogeneous.

Material properties and field quantities in these regions arc identified with a

superscript or subscript ' b ' or 's'.-

The reference configuration for the Lagrangian formulation corresponds to V,

the initial unstressed state with the material points identified by the Cartesian

coordinates xi. In the current deformed state, the material points are at xi + ui

where ui arc the displacement components, and F = I + au/ax.

The solid is deformed quasi-statically to give the deformation rate Fs in the

material strip. As a result of the initial imperfection, the current value of the

field quantities inside the imperfection band will generally differ from those

outside it. The conditions of compatability, equilibrium and balance of energy

must be satisfied.

The requirement of continuity of the velocity field takes the form (Rice

[4]) .

b .s
Fij Fij + qi (21)

where () denotes the material time derivative and v is the unit normal to the

imperfection band in the undcformed statc. The tensor q represents the

current deformation non-uniformity which has accumulated as a result of the

initial imperfection.

.' '. ". .". ":".G ,; .",_,,, ", ..-' ", , , ,; ' '-' ' '-..-. ....:,.'._'"''.. ',. ..'. ..'-"."-" .3 , .2." -f
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The condition of incremental equilibrium between the two regions

requires that

(nb nS ) vi = 0 (2.2)

where n' j arc the contravariant components of the nominal strcss tensor. It is

assumed that the strcss rate in (2.2) is expressible in the form

Sij Kik" AJ
n -K-- Fik + Ai (2.3)

The moduli Ki j k i and Aj arc rate and temperature dependent.

Combining (2.1) through (2.3) yields

Kijk ijk ijk, -s
vvq= - Kb ) Fkvi + (A s - Ab) vi , (2.4)

which is the evolution equation for q.

Heat conduction effects are modelled assuming that the time rate of

change of energy in the imperfection band due to conduction is proportional

to the temperature gradient (Tb - Ts)/I. Accordingly, energy balance between

the two regions results in evolution equations for Ts and Tb, given by

k p
pep w1 s (Tb'Ts) + XwT s d (2.5)

2k rb p
pep wTb - (Tb-Ts) + X wT db • (2.6)

In the equations above, p is the mass density, c is the specific heat at constant

pressure, k is the thermal conductivity, T is the Kirchhoff stress tensor, and dP is

the plastic part of the rate of deformation tensor d, which is the symmetric part

of F F- 1. Heat flowing out of the imperfection band flows to either side of it;

hence the factor of two in (2.6). The fraction of plastic stress work which is

" '. - . . . " - - - - I
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converted to heat is denoted by x, and is typically in the range of 0.85 to 0.95 for

ductile metals (Taylor and Quinncy [14]).

The heat transfer condition incorporated in (2.5) and (2.6) is taken to
"p. *

model the behavior in our recent finite element study of shear localization [15]

from a doubly periodic array of internal inhomogeneities. In those

calculations heat conduction was accounted for within each cell surrounding an

inhomogcneity, but there was no heat flux across cell boundaries.

In a planar analysis, (2.4) through (2.6) constitute a system of four

differential equations which govern the state of the system. Localization occurs

when one of the components of the rate of deformation tensor within the

imperfection band becomes infinite. In the rate independent limit, A = 0, and

ij k2
localization occurs when the determinant of (Kb VIv ) vanishes (Rice [4]).

Two dimensionless groups characterize the thermal response,

._ k X 0o
k X CO .(2.7)

pCp wfn pCpT o

Here, En is a reference strain rate, To is a reference temperature, and oo is a

reference stress. Uniform temperature behavior results as T approaches

infinity, and adiabatic conditions are obtained as T approaches zero. The

characteristic length (k/pc En) governs the extent over which the effects of

heat conduction are significant. We note that the length scale (wf)i entering

the definition of non-dimensional parameter is different from the length

scale used to define a similar non-dimensional parameter in our finite element

study of shear localization in [15]. The rate of internal heat dissipation is

controlled by the parameter 7. -

- - .... . . . . . . . . . °.
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3. CONSTITUTIVE RELATIONS

The flow potential surfaces are taken to be concentric cylinders centered

about a stress state c in stress space. The radius of the flow potential surface

is denoted by oF and is given by

OF -LSS(3.1)

where S = S--m The tensor S is the Kirchhoff stress deviator, given by

S = r - 1/3T" I, where I is the identity tensor. Here, the kinematic and

isotropic hardening plastic flow rules are based on Kirchhoff stress rather than on

Cauchy stress. As long as elastic strains remain small, there is little difference

between the two formulations. -.

The rate of deformation tensor is expressed as the sum of elastic and

plastic parts by

dp

d =d + . (3.2)

The elastic part is given by

de = L'I: (3.3)

where is the Jaumann rate of Kirchhoff stress and L is a fourth order

tensor representing the elastic stiffness of the material. The plastic part of

the rate of deformation tensor is given by

do 3E
d S. (3.4)

2 oF

Here, E is specified by the power law relation

; o [l 3(TTo~l(?-) (3.5)

where o is a reference strain rate, TO is a reference temperature, m is the strain

rate hardening exponent and 13 specifies the thermal softening characteristics of

P P o



the material. This assumed linear temperature dependence is representative of

carbon steels in the range 0 - 500°C, e.g. Staker [16], although at elevated

temperatures the flow stress is generally a non-lincar function of temperature.

We employ combined isotropic and kinematic hardening, Goel and Malvern

[17], with h(E) and the evolution equation for cc given by

h(E) = C O[I + / IE]N + (l-1) o (3.6)

3 + (1- X)b dp  (3.7)

where rL-m CO N-I
b = [I - 13(T-To)] N - [I + T/eo] (3.8)

C
o

Here, oo is a reference stress, Eo is a reference strain, N is the strain hardening

exponent and \ is a constant ranging between zero and unity. Purely isotropic

hardening corresponds to ) = 1, while purely kinematic hardening is given by

X = 0. The evolution equation for b, (3.8), is taken so that at constant strain rate

and temperature, the response for proportional loading is independent of whether

the change in flow potential surface is described by isotropic hardening or by

kinematic hardening, see Needleman and Tvergaard [13].

An expression for the Jaumann rate of Kirchhoff stress is obtained in

terms of rate quantities by combining (3.2) through (3.4),

3 E
SL'd- 2 L :S (3.9)2 av

Although there is no explicit yielding in this formulation, for small m there

is an effective yield point in that plastic strain rates are very small when the

numerator is less than the denominator in (3.5).

,.'

,Nq

U"
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4. FINITE ELEMENT IMPLEMENTATION

4.1 Rate Tangcnt Modulus

In order to increase the stable step size over that of an explicit Eulcr time

integration scheme, Peirce et al. [18] employ a formulation which results in a

tangent modulus type method for solving the governing rate equations. The

method is explicit in that no iterations are required. In this method the effective

uniaxial plastic strain rate C within an increment is expressed as a linear

combination of its rates at times t and t + At by

" = 1 8 )- +  e-'+E (4.1)";i
where e is a parameter ranging from zero to unity. The plastic strain rate at time ,t._

t + At is approximated by

C I (5F.~iEt+At = Et + O '. +- 1 T Ji t . (4.2) 
Ft t t

An expression for &F is obtained by differentiating (3.1) and using (3.7) and (3.9),

0 F = L : S : d - [3G + (1 - )b]-" (4.3)
2 aF

F

where G is the elastic shear modulus and b is given by (3.8).

Combining (4.1) through (4.3) and solving for -yields

= 1+ I L S d (4.4)2a F

where
ft r 6At .-

I + [T (4.5)D m[l -13 (T -TO)]  . i

BAt~t I

= (4.6)
D m oF

DAt t r3G+(l - X)b +X o (] (
D=l+ + -- (I+/o)N (47) Fh cm LoF h • .o

'I'
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Substitution of (4.4) into the expression for the Jaumann rate of Kirchhoff

stress given by (3.9) results in

C:d- 231 L : S (4.8)

C = L- 2 l (L : S) (L : S) (4.9)

The expression for given by (4.8) may be used to compute the stress rates Tij

needed for the computation of the moduli KijkI in (2.4). The details of this

computation are given by Needleman [19].

4.2 Solution of the Couplcd System

Equations (2.4) through (2.6) constitute a coupled system of four differential

equations which may be solved to obtain the state of the system at time t + At.

These equations may be effectively uncoupled by introducing an estimate for the
a n e

temperature rates at time t + eAt, say Ts and Tb, into (2.4). This is accomplished

by expressing T as a quadratic function of time based on its values at the

previous three points in time at which the solution has been obtained, and
-e

extrapolating to obtain T

Following the computation of the 4i using (2.4), the deformation gradient

rate Fij is computed from (2.1). Then the deformation gradient, stresses and

internal variables in the imperfection band and the material strip are updated

using a simple linear incremental updating scheme. Next, the heat generation rate

XT : dp is computed in both regions, and their temperatures are calculated from

(2.5) and (2.6). The stepsize is reduced if the computed and the estimated

temperature rates differ by more than an allowable tolerance.

When the solution of the coupled system at time t + At has been completed,

this solution becomes the new current state. The procedure is then rcpcatcd to

obtain the solution for the next increment. %

..... *.., .
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5. NUMERICAL RESULTS

The material propcrtics used in the calculations arc chosen to bc

representative of a 4340 steel studied experimentally by Hartley [20], and arc

identical to those used in the full two-dimensional finite element calculations

of shear banding by LcMonds and Needleman [15]. These properties arc

specified by co = 1250 MPa, E = 200,000 MPa, v - 0.30, to = 0.003, N = 0.08,

m -- 0.01, Eo = 0.001 se 1, p = 7833 kg/m 3 , Cp - 465 J/kg*C, k = 54 W/m*C

(in the analyses involving heat conduction), 13 = 0.0016 per 0C, and To = 20"C.

These values comprise a reference set of material properties which arc used

for comparison of critical strain predictions of the flow localization analysis to

the critical strains obtained from the finite element calculations in [15].

Non-dimcnsional parameters which dcpcnd on oo arc co/E = 0.00625 and

r = 1.1714. The initial undcformcd state is strcss free and at a uniform

temperature specified by To.

The imperfection is prescribed by specifying a value for the initial flow

strcss in the imperfection band which is slightly different from that in the

surrounding material. We define a measure of the amplitude of the

imperfection with the parameter f = o/so. Values of f less than unity arc

considered, implying that the material in the imperfection band is initially

softer than the surrounding material.

The solid is compressed under conditions of plane strain at a constant

nominal strain rate n' with the compression axis parallel to the x2 axis. This
deformation is obtained by prescribing Fs, = nF, FS - FS -s

22 n 22' 12 -21 = ,an 1~

The stress rate boundary condition may be used in conjunction with (2.3) to

obtain

K112 2 Fs +Al

rS --- K1(5.1)

.....
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The sensitivity of the critical strain to the imperfection strength f is shown

in Fig. 2 for an isotropically hardening material deforming under adiabatic

conditions with in/go = 5x10 5 (in = 500 see'l); therefore =0 in (2.7) and

=1 in (3.6) and (3.7). The parameter ecr denotes the critical strain, which is

the lowest value of the localization strain for all possible initial orientations of

the imperfection band. The localization strain is the value of the maximum

principle logarithmic strain in the material strip at the point when 'b/"s = 10.

The critical strain is very sensitive to the imperfection strength.

In subsequent calculations, we use a value of f = 0.9994 which yields the

critical strain Ecr = 0.150 observed in the finite element calculation of the

isotropically hardening solid deforming under adiabatic conditions in [15].

Although the identification of the initiation of localization in the finite

element calculations is somewhat arbitrary, the strain accumulations in the

band become very rapid at the indicated critical strain. The initial orientation

of the band is o0 51.7", and its orientation at localization, given by
ta nr = (FsitanPo/FS2 )cr, is qtcr = 43.1". This result agrees well with

Ocr = 42.80 observed in the finite element calculation.

The effect of the thermal parameter " on the localization strain is shown in

Fig. 3 for a kinematically hardening solid deformed at in/'o 5 The

adiabatic and uniform temperature limits can be specified to within five percent

error (relative to the numerical results) by T < 0.06 and C > 175, respectively.

The critical strains at the adiabatic and uniform temperature limits arc

Ecr = 0.170 and 0.873, respectively, with corresponding initial band orientations

of 'Po = 52.40 and 76.00.

Finite element c,1lculations in [15] for a kinematically hardening solid with

heat conduction effects were carried out for in/go = 5xl05, 5x104 and 5xl03,

which correspond to in = 500 sec " 1, 50 sec "1 and 5 scc "1. In each case,

A.



-13-

localization occurred rapidly once a shear band initiated. The parameter " in

(2.7) characterizes the thermal response of the solid, with -= 0 specifying the

adiabatic limit and " -- specifying the uniform temperature limit. The value

of -C which results in localization at the critical strains at which the shear bands

formed in the finite element calculations in [15] is shown in Table 1 for each of

the normalized strain rates considered. These values of T will be used in

subsequent calculations which include the effects of heat conduction.

Several finite element calculations using the numerical method in [15] have

been carried out here at in/'o = 5x0 ( 500 see 1 ) for kinematically

hardening solids with material properties which are significantly different from

those used in the previous calculations. The critical strains predicted by the flow

localization analysis agree quite well with the strains at which shear bands

formed in the finite element calculations, as shown in Table 2.

Figures 4 through 7 depict Ecr as a function of the material properties 13, N,

m and n7, respectively, for a kinematically hardening solid deforming at

n/o = 5x105 with " = 3.37 in (2.7). In these figures, the results of the finite

element calculations reported in Table 2 are plotted with the symbol X'. The V.,

agreement between the predictions of the flow localization method (using a

constant imperfection amplitude f = 0.9994) and the results of the finite element

analyses are quite good over a range of considerable variation in the material

properties.

The localization strain predicted in the temperature independent limit (13 0

in (3.5)) in Fig. 4 is finite, although this is not readily apparent from the figure.

The localization strain in this case is very high due to the weak imperfection

(f = 0.9994). A stronger imperfection will permit localization at a strain which is

physically plausible. For example, Ecr = 0.50 when f = 0.991. If an isotropic

hardening surface is used, then the material is so resistant to localization when

... .. .. .. . ... . *. . . . -. . . . - . . .. . -.-. L.-- -i-. . -- .. . . . -- .. .: . . .. . . . .'.. . .
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13 = 0 that an imperfection specified by f - 0.878 is necessary in order to obtain %

(cr = 0.50.

The critical strain shown as a function of the strain hardening exponent N

(see (3.6)) in Fig. 5 exhibits a maximum value Emax = 0.296 at N = 0.22. The

material stiffness and the rate of internal heat generation both increase with

increasing N. Strain hardening tends to stabilize the deformation, while softening -

due to increased heating is destabilizing, Clifton [21]. These competing effects

account for the observed maximum critical strain.

Fig. 8 shows the dependence of the localization strain on the imperfection

band orientation for several values of the thermal softening parameter 13 in (3.5)

for the case of kinematic hardening with " = 3.37 in (2.7). The solid curves

correspond to the initial band orientation, and the dashed curves correspond to the

angle at localization. The imperfection band orientation at localization always

falls below 7/4, which is consistent with the predictions of bifurcation analyses

for plane strain compression, Hutchinson and Tvergaard [8].

The jump in hydrostatic stress across the band interface is shown in

Fig. 9 for several values of the strain hardening exponent N in (3.7) for a

kinematically hardening solid deformed at =n/o  5x105 with " 3.37 in

(2.7). For N > 0.17, the hydrostatic stress in the imperfection band is less than

that in the surrounding material throughout the deformation history, whereas

for more lightly hardening materials the jump in hydrostatic stress is negative

initially and then increases. For the case where N = 0.05, the maximum

principal logarithmic strain is 0.224 inside the band and 0.167 outside the band

when the increase in the jump in hydrostatic stress takes place. This

suggests the possibility that at large accumulated shear, the hydrostatic stress

in the band may become positive even though the nominal stress state is one ,

of plane strain compression. This is of interest in regard to ductile failure

I1
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mechanisms since void growth is driven by a positive hydrostatic tension (see

e.g. Rice and Traccy [22], McClintock [23]).

The effect of the mixed hardening parameter X in (3.6) and (3.7) on the

localization strain is shown in Fig. 10 for a solid compressed at in/'o = 5x10 3

(in = 5 sec "1 ) with - 25.34 in (2.7). Localization occurs at Ecr 0.554 with

Oo  69.30 for kinematic hardening, and at Ecr = 0.93 with o = 80.30 for

isotropic hardening. The effective stress in shear is lower for the kinematic

hardening surface, and the higher curvature of that surface relative to the

isotropic hardening surface results in a greater increment in shear strain for a

given increment in stress. In the finite element calculation in [15] with isotropic

hardening at this imposed strain rate, the solid was deformed until E -- 0.90

without any indication of shear band formation.

'I.

A7 "



N.

-16-=

6. CONCLUSIONS

The results of the present analysis indicate that shear localizaiton in rate and

temperature dependent solids is strongly influenced by a variety of factors. Which

factors arc most influential depends on the complete description of the material - its

properties and constitutive behavior - and the imposed deformation rate. For the

kinematically hardening solid specified by our reference set of material parameters,

and deformed in plane strain compression at n = 500 scc l, a five-fold increase in

the localization strain occurs between the adiabatic and uniform temperature limits,

identifying heat conduction as the primary stabilizing effect. The main destabilizing

factor in this case is thermally-induced softening: a physically plausible value of the

thermal softening parameter (13 = 0.0016 per *C) permits a relatively weak

imperfection (f = 0.9994) to result in localization at Ecr = 0.217. The results also

illustrate the effect of the interaction of the material properties. For example,

whether strain hardening is stabilizing or destabilizing depends on the degree of

thermal softening. Furthermore, as strain rates decrease, the effects of thermal

softening diminish, and the description of the flow potential surface plays a greater

role in the localization process. In the analyses with n = 500 sec& 1 , the particular

description of the combination of isotropic and kinematic hardening is only a

secondary effect, altering the localization strain by no more than twenty percent.

Using physically plausible values for the imperfection amplitude f and the

thermal parameter t,.thc flow localization method yields critical strains which are

in very close agreement with the results of the full, two-dimensional finite element

calculations of shear banding by LeMonds and Needleman [15]. Our present

calculations illustrate that the use of constant values of f and C result in .

reasonably accurate critical strain predictions over a fairly broad range of

material properties.
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TABLE 1

Valucs of thc non-dimensional thermal parametcr in (2.7) which result in

localization at the critical strain which marks the point of shear band initiation

in the finite element calculations with kincmatic hardening prcsentcd in [15]. Thc

adiabatic limit is spccified by 1 .0 and thc uniform temperature limit is given

b y - .The imperfection amplitude is f =0.9994. The values of all other

material properties arc specified in the text.

in/'o cr-FEA

5-105 0.218 3.37

5xO0.335 11.86

5x,03 0.537 25.34

7% .
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, TABLE 2

Critical strain predictions of the flow localization method compared with the .

critical strains at which shear bands were observed initiated in finite element

calculations carried out here using the analytical method presented in [151. The

imperfection amplitude is f =0.9994. The values of all other material properties

arc specified in the text.."

Parameter Value "XEcr-FEA Ecr-FLOC.-

.: .%

13 0.00105 3.37 0 0.330 0.347 "''

a'.-'.

0.003.37 0 0.168 0.168

N0.20 3.37 0 0.295 0.296":"

N 0.30 3.37 0 0.277 0.286 i

m 0.025 0 1 0.193 0.200

m 0.002 3.37 0 0.175 0.150

m 0.025 3.37 0 0.283 0.293

rt0.75 3.37 0 0.345 0.359
* .1 301.

rt 1.50 3.3TABL 2.7 .6

Crtca tri peicinso tcflwloaiztonmthdcoprc it h

U F

critical strains-. at---....---- which sha bad wcr o...c.. vcd..initiatcd..,in.finite..:c---.cnt
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FIGURE CAPTIONS

Fig. 1 The imperfection band (b) and strip of surrounding material (s)

separated by the characteristic length 2. Plane strain compression

occurs in the x2 direction.

Fig. 2 Localization strain vs. the imperfection amplitude f = ab/ o for

an isotropically hardening solid dcformcd at in/io = 5x1.

(in= 500 sec'). The value of the Fourier modulus in (2.7) is " = 0,

which corresponds to the adiabatic limit. The values of all other

material properties are specified in the text.

Fig. 3 Localization strain Ecr vs. the non-dimensional parameter in (2.7)

for a kinematically hardening solid deformed at n/ = 5x0

(in = 500 scc'l), with the imperfection amplitude f = 0.9994. The

value- of all other material properties are specified in the text.

Fig. 4 Localization strain Ecr vs. the thermal softening parameter 13 in (3.5)

for a kinematically hardening solid deformed at in/Eo = 5x10 5

(in = 500 sec' 1 ), with the imperfection amplitude f = 0.9994 and

= 3.37 in (2.7). The values of all other material properties are

specified in the text. Points labelled with an 'X' correspond to

results of finite element calculations.

Fig. 5 Localization strain Ecr vs. the straifi hardening exponent N in (3.6) for

a kinematically hardening solid deformed at n/'o = 5x10 5

(in = 500 scel), with the imperfection amplitude f = 0.9994 and

= 3.37 in (2.7). The values of all other material properties arc

specified in the text. Points labelled with an 'XI correspond to

results of finite element calculations.

dI
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Fig. 6 Localization strain Ecr vs. the strain rate sensitivity exponent m in

(3.5) for a kinematically hardening solid deformed at in/' o = 5-105

(in - 500 scce 1), with the imperfection amplitude f = 0.9994 and

I = 3.37 in (2.7). The values of all other material properties are

specified in the text. Points labelled with an 'X' correspond to

results of finite element calculations.

Fig. 7 Localization strain Ecr vs. the non-dimensional parameter r) in

(2.7), which measures the magnitude of the rate of internal heat

generation, for a kinematically hardening solid deformed at

in/'o = 5xl05 (in = 500 sec 1 ), with the imperfection amplitude

f = 0.9994 and -C = 3.37 in (2.7). The values of all other

material properties are specified in the text. Points labelled with

an 'X' correspond to results of finite element calculations.

Fig. 8 Localization strain E vs. the imperfection plane orientation angle "-

(- initial angle, --- angle at localization) for a kinematically

hardening solid deformed at in/io = 5xl05 (in = 500 see' 1), with

the imperfection amplitude f = 0.9994 and " = 3.37 in (2.7). The

values of all other material properties are specified in the text.

Fig. 9 Jump in hydrostatic stress across the imperfection band interface,

normalized with respect to a. in (3.6), vs. c, the maximum principle

logarithmic strain outside the band. The solid hardens kinematically

and is deformed at in/io = 5x105 (in = 500 scc1), with the

impcrfcctitn amplitude f = 0.9994 and 1 = 3.37 in (2.7). The

values of all other material properties arc specified in the text.

Fig. 10 Localization strain ccr vs. the mixed hardcning parameter X in (3.6)

and (3.7) for a solid deformed at in/Eo = 5×10 (E n = 5 s5e,),

with the imperfection amplitude f = 0.9994 and " = 25.34 in (2.7).

The values of all other material properties arc specified in the text.

4.'-
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